Флагманская модель Gemini 1.5 Pro произвела революцию благодаря беспрецедентному контекстному окну в 1 миллион токенов, что эквивалентно примерно 700,000 слов. Разработка Gemini стала важной вехой в развитии искусственного интеллекта от Google. Это первая по-настоящему мультимодальная модель компании, созданная с нуля для комплексной обработки различных типов информации. В отличие от предыдущих разработок, Gemini изначально проектировалась для одновременной работы с текстом, кодом, аудио, видео и изображениями. На этом этапе используются специально подготовленные наборы данных, которые помогают модели лучше справляться с конкретными задачами и соответствовать заданным стандартам качества и этики.
Попрошу не выражаться: как языковые модели ИИ адаптируются под культурный контекст
Некоторые нейросети могут создавать изображения, музыку и видео — но об этом чуть позже. Отдельное внимание специалисты уделили словам и выражениям по теме детства, которая не относится к какому-либо из вышеперечисленных типов, однако несет значительный культурный пласт. В список попали персонажи русских народных сказок, литературные отсылки, детские пословицы и выражения. Нейросеть научилась лучше улавливать нюансы человеческой речи и точнее интерпретировать сложные запросы. Особенно заметны были улучшения в работе с техническими текстами и программным кодом. Для повышения эффективности современные модели часто используют смесь экспертов (Mixture of Experts, MoE). При таком подходе нейросеть состоит из множества специализированных подсетей ("экспертов"), каждая из которых отвечает за https://github.com/topics/artificial-intelligence определенный тип задач или область знаний. Специальная управляющая сеть направляет входные данные к наиболее подходящим экспертам.
EzAudio: гиперреалистичная открытая Text-to-Audio модель
Он приносит возможность дообучения небольшой части параметров модели, с незначительным падение точности, по отношению к полному дообучению. Полное дообучение модели является операцией, требующей большого объема памяти из-за необходимости хнанения градиента ошибки для каждого параметра модели. В настоящее время наиболее используемым оптимизатором для языковых моделей является AdamW [15], суть метода заключается в отдельной регуляризации затухания весов. Следующее поколение моделей будет еще глубже интегрировать различные типы информации. Это откроет новые возможности для применения ИИ в робототехнике, медицине и промышленности. Первая и главная задача разработчиков — собрать качественный датасет для обучения модели.
- Компания также ведет рейтинг Open LLM, который представляет собой платформу для отслеживания, ранжирования и оценки открытых LLM и чат-ботов, включая такие популярные модели, как Falcon LLM и Mistral LLM, а также новые проекты.
- Например, слова «дождь», «солнце», «ветер», скорее всего, будут находиться рядом в векторном пространстве, потому что все они описывают погоду.
- «Понятно, что не бывает строго определенных культурных типов, мы все разные, да и вопросы в этом эксперименте специфичные.
Llama (Meta)
Однако их внедрение требует учёта не только технических, но и юридических аспектов. Чем больше параметров, тем лучше модель решает сложные задачи, но она также требует огромных вычислительных ресурсов. Чтобы потренироваться в работе с языковыми моделями, достаточно базовых знаний Python и основ хотя бы одной библиотеки ML. http://opelforum.lv/user/SEO-Clicks/ Также пользователю часто доступны дополнительные параметры ответа, такие как его максимальная длина и температура. Второй параметр сообщает модели, насколько творчески она может подойти к задаче. С низкими значениями температуры LLM выдаст более детерминированный ответ, что подходит для фактических запросов, а с высокими — будет больше «фантазировать» и напишет, например, более удачную песню или сочинение. С публичным доступом к исходному коду, приглашают отдельных разработчиков, исследователей и организации свободно использовать, модифицировать и распространять модели. Вместо универсальных моделей будущее может принадлежать системам, которые динамически адаптируются под конкретные задачи и области применения. Технология Mixture of Experts, используемая в Gemini, представляет собой первый шаг в этом направлении. Например, одна головка может сосредоточиться на взаимосвязи между глаголами и объектами, другая на связях между объектами и предлогами, как показано на Схеме 1. Важным аспектом работы нейросетей является контекстное окно – максимальный объем информации, который модель может анализировать одновременно. Размер области восприятия определяет, насколько масштабные тексты модель способна анализировать и насколько эффективно она удерживает контекст в длительных диалогах. Современные модели имеют области восприятия от нескольких тысяч до сотен тысяч токенов. GigaChat, как и GPT, это большая языковая модель (или Large Language Model, LLM), которая учится, анализируя содержание книг, статей, инструкций, диалогов и веб-страниц. Одну и ту же модель можно использовать и для генерации кода, и для имитации живого диалога или придумывания историй. https://autovin-info.com/user/SEO-Research/ Первые языковые модели появились еще в 1990-х годах и могли работать только над лексическим переводом, выравниванием порядка слов в предложениях и другими относительно несложными задачами. Работа над полноценными LLM началась в начале 2010-х годов, когда нейронные сети хорошо зарекомендовали себя в работе с изображениями. В настоящее время интерес представляют новые техники управления поведением больших языковых моделей с целью получения желаемого пользователем результата без обновления самих моделей – так называемый «промт инжиниринг». Эта библиотека, использующая различные архитектуры LLM, стала одним из самых быстрорастущих проектов с открытым исходным кодом в этой области. Hugging Face, часто называемый GitHub-ом для больших языковых моделей (LLM), способствует созданию открытой экосистемы для LLM. Для продвинутой работы с запросами к большим языковым моделям вы также можете изучить Руководство по проектированию промтов. https://medknigki-v-ulan-ude.ru/user/Organic-Wave/ Производителю обуви Ralf Ringer с помощью YandexGPT удалось наполовину автоматизировать обработку обращений в клиентскую поддержку. К 2022 году OpenAI пересмотрела свое отношение и представила миру ChatGPT (GPT 3.5), которая стала первой большой языковой моделью, привлекшей огромное внимание. На основе подготовленных датасетов разработчики составили 400 вопросов и адресовали их десяти самым продвинутым языковым моделям с поддержкой русского https://paperswithcode.com языка. Ученые не стали их обучать на разработанных базах данных или как-то дорабатывать, поскольку задачей было именно проверить текущую осведомленность нейросетей. В результате исследователи получили ответов, проанализировали их и смогли выяснить, какие из выбранных алгоритмов лучше других разбираются в различных культурных аспектах.